![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||
БНБ "БСЭ" (95279) - Photogallery - Естественные науки - Математика - Технология
|
АнизотропияОпределение "Анизотропия" в Большой Советской Энциклопедии
Аналогично различаются удельные электрические сопротивления кристаллов вдоль главной оси симметрии r// и перпендикулярно ей r^.
Таблица 2. - Удельное электрическое сопротивление некоторых кристаллов вдоль главной оси симметрии и перпендикулярно ей (1 ом·см = 0,01 ом·м)
Механическая Анизотропия состоит в различии механических свойств - прочности, твёрдости, вязкости, упругости - в разных направлениях. Количественно упругую Анизотропия оценивают по максимальному различию модулей упругости. Так, для поликристаллических металлов с кубической решёткой отношение модулей упругости вдоль ребра и вдоль диагонали куба для железа равно 2,5, для свинца 3,85, для бета-латуни 8,7. Кубические монокристаллы характеризуются тремя главными значениями модулей упругости (табл. 3).
Таблица 3. - Главные значения модулей упругости некоторых кубических кристаллов
Математически анизотропные свойства кристаллов характеризуются векторами и тензорами, в отличие от изотропных свойств (например, плотности), которые описываются скалярными величинами. Например, коэффициент пироэлектрического эффекта (см. Пироэлектричество) является вектором. Электрическое сопротивление, диэлектрическая проницаемость, магнитная проницаемость и теплопроводность - тензоры второго ранга, коэффициент пьезоэлектрического эффекта (см. Пьезоэлектричество) - тензор третьего ранга, упругость - тензор четвёртого ранга. Анизотропия графически изображают с помощью указательных поверхностей (индикатрисс): из одной точки во всех направлениях откладывают отрезки, соответствующие константе в этом направлении. Концы этих отрезков образуют указательную поверхность (рис. 2-5). Поликристаллические материалы (металлы, сплавы), состоящие из множества кристаллических зёрен (кристаллитов), ориентированных произвольно, в целом изотропны или почти изотропны. Анизотропия свойств поликристаллического материала проявляется, если в результате обработки (отжига, прокатки и т. п.) в нём создана преимущественная ориентация отдельных кристаллитов в каком-либо направлении (текстура). Так, при прокатке листовой стали зёрна металла ориентируются в направлении прокатки, в результате чего возникает Анизотропия (главным образом механических свойств), например для прокатанных сталей предел текучести, вязкость, удлинение при разрыве, вдоль и поперёк направления проката различаются на 15-20% (до 65%). Причиной естественной Анизотропия является упорядоченное расположение частиц в кристаллах, при котором расстояние между соседними частицами, а следовательно, и силы связи между ними различны в разных направлениях (см. Кристаллы). Анизотропия может быть вызвана также асимметрией и определённой ориентацией самих молекул. Этим объясняется естественная Анизотропия некоторых жидкостей, особенно Анизотропия жидких кристаллов. В последних наблюдается двойное лучепреломление света, хотя большинство других их свойств изотропно, как у обычных жидкостей. Анизотропия наблюдается также и в определённых некристаллических веществах, у которых существует естественная или искусственная текстура (древесина и т. п.). Например, фанера или прессованная древесина вследствие слоистости строения могут обладать пьезоэлектрическими свойствами, как кристаллы. Комбинируя стеклянное волокно с пластмассами, удаётся получить анизотропный листовой материал с прочностью на разрыв до 100 кгс/мм2. Искусственную Анизотропия можно также получить, создавая заданное распределение механических напряжений в первоначально изотропном материале. Например, при закалке стекла можно получить в нём Анизотропия, которая влечёт за собой упрочнение стекла.
Искусственная оптическая Анизотропия возникает в кристаллах и в изотропных средах под действием электрического поля (см. Электрооптический эффект в кристаллах, Керра явление в жидкостях), магнитного поля (см. Коттон-Мутона эффект), механического воздействия (см. фотоупругость). Анизотропия широко распространена также в живой природе. Оптическая Анизотропия обнаруживается в некоторых животных тканях (мышечной, костной). Так, миофибриллы поперечно исчерченных мышечных волокон при микроскопии кажутся состоящими из светлых и тёмных участков. При исследовании в поляризованном свете эти тёмные диски, как и гладкие мышцы и некоторые структуры костной ткани, обнаруживают двойное лучепреломление, т. е. они анизотропны. В ботанике Анизотропия называется способность разных органов одного и того же растения принимать различные положения при одинаковых воздействиях факторов внешней среды. Например, при одностороннем освещении верхушки побегов изгибаются к свету, а листовые пластинки располагаются перпендикулярно к направлению лучей. Лит.: Бокий Г. Б., Флинт Е. Е., Шубников Анизотропия В., Основы кристаллографии, М.-Л., 1940; Най Дж., Физические свойства кристаллов..., пер. с английского, 2 изд., М., 1967; Волокнистые композиционные материалы, пер. с английского, М., 1967; Дитчберн Р., Физическая оптика, пер. с английского, М., 1965.
Статья про "Анизотропия" в Большой Советской Энциклопедии была прочитана 1252 раз |
TOP 20
|
||||||||||||||||||||||||||||||||