![]() |
![]() |
![]() |
|||||||
БНБ "БСЭ" (95279) - Photogallery - Естественные науки - Математика - Технология
|
Ошибок теорияОпределение "Ошибок теория" в Большой Советской ЭнциклопедииОшибок теория, раздел математической статистики, посвященный построению уточнённых выводов о численных значениях приближённо измеренных величин, а также об ошибках (погрешностях) измерений. Повторные измерения одной и той же постоянной величины дают, как правило, различные результаты, так как каждое измерение содержит некоторую ошибку. Различают 3 основных вида ошибок: систематические, грубые и случайные. Систематические ошибки всё время либо преувеличивают, либо преуменьшают результаты измерений и происходят от определённых причин (неправильной установки измерительных приборов, влияния окружающей среды и т. д.), систематически влияющих на измерения и изменяющих их в одном направлении. Оценка систематических ошибок производится с помощью методов, выходящих за пределы математической статистики (см. Наблюдений обработка). Грубые ошибки возникают в результате просчёта, неправильного чтения показаний измерительного прибора и т. п. Результаты измерений, содержащие грубые ошибки, сильно отличаются от других результатов измерений и поэтому часто бывают хорошо заметны. Случайные ошибки происходят от различных случайных причин, действующих при каждом из отдельных измерений непредвиденным образом то в сторону уменьшения, то в сторону увеличения результатов.
Ошибок теория занимается изучением лишь грубых и случайных ошибок. Основные задачи Ошибок теория: разыскание законов распределения случайных ошибок, разыскание оценок (см. Статистические оценки) неизвестных измеряемых величин по результатам измерений, установление погрешностей таких оценок и устранение грубых ошибок.
называются истинными ошибками. В терминах вероятностной Ошибок теория все di трактуются как случайные величины; независимость измерений понимается как взаимная независимость случайных величин d1,..., dn. Равноточность измерений в широком смысле истолковывается как одинаковая распределённость: истинные ошибки равноточных измерений суть одинаково распределённые случайные величины. При этом математическое ожидание случайных ошибок b = Ed1 =...= Еdn называется систематической ошибкой, а разности d1 — b,..., dn — b — случайными ошибками. Таким образом, отсутствие систематической ошибки означает, что b = 0, и в этой ситуации d1,..., dn суть случайные ошибки. Величину
а разности D1 = x1 —
D
Опыт показывает, что практически очень часто случайные ошибки di подчиняются распределениям, близким к нормальному (причины этого вскрыты так называемыми предельными теоремами теории вероятностей). В этом случае величина
(Es2 = s2, т. е. s2 — несмещенная оценка для s2), если случайные ошибки di имеют нормальное распределение, то отношение
подчиняется Стьюдента распределению с n — 1 степенями свободы. Этим можно воспользоваться для оценки погрешности приближённого равенства а »
Величина (n — 1) s2/s2 при тех же предположениях имеет распределение c2 (см. «Хи-квадрат» распределение) с n — 1 степенями свободы. Это позволяет оценить погрешность приближённого равенства s » s. Можно показать, что относительная погрешность |s — s|Is не будет превышать числа q с вероятностью
Лит.: Линник Ю. В., Метод наименьших квадратов и основы математико-статистической теории обработки наблюдений, 2 изд., М., 1962; Большев Л. Н., Смирнов Н. В., Таблицы математической статистики, 2 изд., М., 1968.
Статья про "Ошибок теория" в Большой Советской Энциклопедии была прочитана 765 раз |
TOP 20
|
|||||||