![]() |
![]() |
![]() |
|||||||
БНБ "БСЭ" (95279) - Photogallery - Естественные науки - Математика - Технология
|
Параметрическое представлениеОпределение "Параметрическое представление" в Большой Советской Энциклопедии
Параметрическое представление функции, выражение функциональной зависимости между несколькими переменными посредством вспомогательных переменных параметров. В случае двух переменных х и у зависимость между ними F (х, у) = 0 может быть геометрически истолкована как уравнение некоторой плоской кривой. Любую величину t, определяющую положение точки (х, у) на этой кривой (например, длину дуги, отсчитываемой со знаком + или - от некоторой точки кривой, принятой за начало отсчёта, или момент времени в некотором заданном движении точки, описывающей кривую), можно принять за параметр, в функции которого выразятся х и у:
Последние функции и дадут Параметрическое представление функциональной зависимости между х и у, уравнения (*) называют параметрическими уравнениями соответствующей кривой. Так, для случая зависимости x2 + y2 = 1 имеем Параметрическое представление х= cos t, у = sin t (0 £ t < 2p) (параметрические уравнения окружности); для случая зависимости х2-у2 = 1 имеем Параметрическое представление Для случая трёх переменных х, у и z, связанных зависимостью F (x, y, z) = 0 (одну из них, например z, можно рассматривать как неявную функцию двух других), геометрическим образом служит поверхность. Чтобы определить положение точки на ней, нужны два параметра u и u (например, широта и долгота на поверхности шара), так что Параметрическое представление имеет вид: х = j(u, u), у = y (u, u); z = c (u, u). Например, для зависимости x2+ y2= (z2+1)2 имеем Параметрическое представление х = (u2-1) cos u; у = (u2 + 1) sinu; z = u. Важнейшими преимуществами Параметрическое представление являются: 1) то, что они дают возможность изучать неявные функции и в тех случаях, когда переход к их явному заданию без посредства параметров затруднителен; 2) то, что здесь удаётся выражать многозначные функции посредством однозначных. Вопросы Параметрическое представление изучены особенно хорошо для аналитических функций. Параметрическое представление аналитических функций посредством однозначных аналитических функций составляет предмет теории униформизации.
Статья про "Параметрическое представление" в Большой Советской Энциклопедии была прочитана 425 раз |
TOP 20
|
|||||||