Стереографическая проекция, соответствие между точками сферы и плоскости, получаемое следующим образом: из некоторой точки С на сфере (центра Стереографическая проекция) другие точки сферы проектируются лучами на плоскость, перпендикулярную радиусу сферы ОС и не проходящую через С (см. рис.; обычно эту плоскость проводят или через центр О сферы, или через точку С" — конец диаметра сферы СС"). При этом каждая точка М сферы, отличная от С, перейдёт в некоторую точку М" плоскости; такое соответствие (после исключения из сферы самого центра проекции С, которому никакая точка плоскости не соответствует) будет взаимно однозначным. Основные свойства Стереографическая проекция: 1) окружностям на сфере соответствуют окружности же на плоскости (на рис. окружности Г соответствует окружность Г"), причём окружностям, проходящим через центр Стереографическая проекция, соответствуют на плоскости прямые линии (окружности бесконечно большого радиуса; на рис. у и у")", 2) соответствие, устанавливаемое Стереографическая проекция, является конформным, т. е. сохраняет углы (см. Конформное отображение), например, угол LMN на сфере равен углу L"M"N" на плоскости.
Стереографическая проекция — перспективная картографическая проекция. Часто применяется в картографии, т.к. для территории округлой формы из всех равноугольных проекций даёт наименьшее колебание масштаба. Используется также в астрономии, кристаллографии и др.