![]() |
![]() |
![]() |
|||||||
БНБ "БСЭ" (95279) - Photogallery - Естественные науки - Математика - Технология
|
Численное решение уравненийОпределение "Численное решение уравнений" в Большой Советской Энциклопедии
Численное решение уравнений, нахождение приближённых решений алгебраических и трансцендентных уравнений. Численное решение уравнений сводится к выполнению арифметических операций над коэффициентами уравнений и значениями входящих в него функций и позволяет найти решения уравнений с любой наперёд заданной точностью. К Численное решение уравнений сводятся многие задачи математики и её приложений. Хотя общие методы Численное решение уравнений появились лишь в 17 в. (И. Ньютон), но ещё Леонардо Пизанский (начало 13 в.) вычислил корень уравнения х3 + 2x2 + 10x = 20 с ошибкой, меньшей чем Численное решение алгебраических уравнений разбивается на следующие этапы: 1) выделение кратных корней, сводящее задачу к решению уравнения с простыми корнями; 2) определение границ, между которыми могут лежать корни уравнения; 3) разделение корней, т. е. указание промежутков, каждый из которых содержит не более одного простого корня (см. Штурма правило); 4) грубое определение приближённого значения корня, выполняемое графически или каким-либо иным способом (например, при помощи изучения перемен знака левой части уравнения); 5) вычисление корня с заданной точностью. Наиболее распространёнными методами для этого являются методы ложного положения, метод Ньютона, Лобачевского метод, последовательных приближений метод, разложение в ряды и т.д.
При численном решении трансцендентных уравнений ограничиваются этапами 4 и 5. О численном решении дифференциальных уравнений см. в ст. Приближённое решение дифференциальных уравнений.
Статья про "Численное решение уравнений" в Большой Советской Энциклопедии была прочитана 470 раз |
TOP 20
|
|||||||