Эллипс, линия пересечения круглого конуса с плоскостью, встречающей одну его полость (рис. 1). Эллипс (геометрич.) может быть также определён как геометрическое место точек М плоскости, для которых сумма расстояний до двух определенных точек F1 и F2 (фокусов Эллипс (геометрич.)) этой плоскости есть величина постоянная. Если выбрать систему координат xOy так, как указано на рис. 2 (OF1 =OF2 = с), то уравнение Эллипс (геометрич.) примет вид: (*)
(2a = F1M + F2M, ). Эллипс (геометрич.) — линия второго порядка; она симметрична относительно осей AB и CD; точка О — центр Эллипс (геометрич.) — является его центром симметрии; отрезки AB = 2a и CD = 2b называются соответственно большой и малой осями Эллипс (геометрич.); число е = с/а<1 — эксцентриситет Эллипс (геометрич.) (при е = 0, то есть при а = b,Эллипс (геометрич.) есть окружность). Прямые, уравнения которых x = —а/е и х = а/е, называются директрисами Эллипс (геометрич.); отношение расстояния точки Эллипс (геометрич.) до ближайшего фокуса к расстоянию до ближайшей директрисы постоянно и равно эксцентриситету. Точки А, В, С, D пересечения Эллипс (геометрич.) с осями Ox и Оу называются его вершинами. См. также Конические сечения.