Комбинаторика

Определение "Комбинаторика" в Большой Советской Энциклопедии


Комбинаторика, 1) то же, что математический комбинаторный анализ. 2) Раздел элементарной математики, связанный с изучением количества комбинаций, подчинённых тем или иным условиям, которые можно составить из заданного конечного множества объектов (безразлично, какой природы; это могут быть буквы, цифры, какие-либо предметы и т.п.).
Наиболее употребительные формулы Комбинаторика:
Число размещений. Пусть имеется n различных предметов. Сколькими способами можно выбрать из них т предметов (учитывая порядок, в котором выбираются предметы)? Число способов равно
Anm =
Anm называют числом размещений из n элементов по m.
  Число перестановок. Рассмотрим задачу: сколькими способами можно установить порядок следования друг за другом n различных предметов? Число способов равно
Pn = 1Ч2Ч 3... n= n!


  (знак n! читается: «n факториал»; оказывается удобным рассматривать также 0!, полагая его равным 1). Pn называют числом перестановок n элементов.


Число сочетаний. Пусть имеется n различных предметов. Сколькими способами можно выбрать из них т предметов (безразлично, в каком порядке выбираются предметы)? Число способов такого выбора равно
Cnm =


Cnm называют числом сочетаний из n элементов по m. Числа Cnm получаются как коэффициенты разложения n-й степени двучлена (бинома, см. Ньютона бином):



  (a+b) n=Cn0 an + Cn1 an-1b +Cn2an-2b2  +... + Cnn-1abn-1 + Cnn bn,
и поэтому они называются также биномиальными коэффициентами. Основные соотношения для биномиальных коэффициентов:


Cnm=Cnn-m, Cn+ Cnm+1 = Cn+1m+1


  Cn0 + Cn1 + Cn2 +...+ Cnn-1 + Cnn =2n,


  Cn0Cn1 + Cn2 —...+ (—1) nCnn = 0.


Числа Anm, Pm и Cnm связаны соотношением:
Anm=Pm Cnm.


  Рассматриваются также размещения с повторением (т. е. всевозможные наборы из m предметов n различных видов, порядок в наборе существен) и сочетания с повторением (то же, но порядок в наборе не существен). Число размещений с повторением даётся формулой nm, число сочетаний с повторением — формулой Cmn+m-1.


  Основные правила при решении задач Комбинаторика: Правило суммы. Пусть некоторый предмет А может быть выбран из совокупности предметов m способами, а другой предмет В можно выбрать n способами. Тогда имеется т + n возможностей выбрать либо предмет A, либо предмет В.


  Правило произведения. Пусть предмет А можно выбрать m способами и после каждого такого выбора предмет В можно выбрать n способами; тогда выбор пары (А, В) в указанном порядке можно осуществить m + n способами.


Принцип включения и исключения. Пусть имеется N предметов, которые могут обладать n свойствами a1, a2,..., an. Обозначим через N (ai, aj,..., ak) число предметов, обладающих свойствами ai, aj,..., ak и, быть может, какими-либо другими свойствами. Тогда число N" предметов, не обладающих ни одним из свойств, a1, a2,..., an, даётся формулой


 = NN (a1)N (a2) —... —N (an) + N (a1, a2) + N (a1, a3) +... + N (an-1, an) — N (a1, a2, a3) —... — N (an-2, an-1, an) +... +(—1) n N (a1,..., an)
  Лит.: Netto E. Lehrbuch der Combinatorik, 2 Aufl., Lpz. — B., 1927.
  В. Е. Тараканов.




"БСЭ" >> "К" >> "КО" >> "КОМ" >> "КОМБ"

Статья про "Комбинаторика" в Большой Советской Энциклопедии была прочитана 489 раз
Коптим скумбрию в коробке
Семга на горелке

TOP 20